Permutation modules for rank 3 symplectic and orthogonal groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank 3 Permutation Modules of the Finite Classical Groups

The cross-characteristic permutation modules for the actions of the finite classical groups on singular 1-spaces of their natural modules are studied. The composition factors and submodule lattices are determined.

متن کامل

Finite permutation groups of rank 3

By the rank of a transitive permutation group we mean the number of orbits of the stabilizer of a point thus rank 2 means multiple transitivity. Interest is drawn to the simply transitive groups of "small" rank > 2 by the fact that every known finite simple group admits a representation as a primitive group of rank at most 5 while not all of these groups have doubly transitive representations. ...

متن کامل

On imprimitive rank 3 permutation groups

A classification is given of rank 3 group actions which are quasiprimitive but not primitive. There are two infinite families and a finite number of individual imprimitive examples. When combined with earlier work of Bannai, Kantor, Liebler, Liebeck and Saxl, this yields a classification of all quasiprimitive rank 3 permutation groups. Our classification is achieved by first classifying imprimi...

متن کامل

ON THE PERMUTATION MODULES FOR ORTHOGONAL GROUPS O± m(3) ACTING ON NONSINGULAR POINTS OF THEIR STANDARD MODULES

We describe the structure, including composition factors and submodule lattices, of cross-characteristic permutation modules for the natural actions of the orthogonal groups O± m(3) with m ≥ 6 on nonsingular points of their standard modules. These actions together with those studied in [2] are all examples of primitive rank 3 actions of finite classical groups on nonsingular points.

متن کامل

Eigendistributions for Orthogonal Groups and Representations of Symplectic Groups

We consider the action of H = O(p, q) on the matrix space Mp+q,n(R). We study a certain orbit O of H in the null cone N ⊆ Mp+q,n(R) which supports an eigendistribution dνO for H . Using some identities of Capelli type developed in the Appendix, we determine the structure of G̃ = Sp(2n,R)∼-cyclic module generated by dνO under the oscillator representation of G̃ (the metaplectic cover of G = Sp(2n(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1985

ISSN: 0021-8693

DOI: 10.1016/0021-8693(85)90142-5